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A rectangular phase screen transmission model is usually applied to the simulation of optical propagation processes in 

atmospheric turbulence. In this paper, we analyze the relationship between fractal Brownian motion and atmospheric 

turbulence firstly. Then based on the classical fractal algorithm, a new algorithm is proposed to generate a rectangular 

phase screen, which combines the random midpoint displacement (RMD) principle with the successive random additions 

(SRA) technique. It mainly contains three interpolation methods including square interpolation, trigonometric interpolation 

and diamond interpolation, respectively. Therefore we call the algorithm (S-T-D)RMD-SRA. We carry out the split-step 

method to propagate beam through atmospheric turbulence, which is simulated by a rectangular phase screens 

transmission model. Numerical simulations show that the new algorithm and traditional FFT-based algorithm on the 

statistical properties are almost consistent with the theoretical value. Furthermore, it has high performance in computation 

time and parallel efficiency. 
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1. Introduction 

 

In the development of wireless optical 

communication and ground-based telescope, laser radar, 

atmospheric turbulence has become one of the most 

important constraints [1,2]. An effective method in the 

research of atmospheric turbulence is the numerical 

simulation technique, which is based on a multi-phase 

screen transmission model. A turbulence phase screen is 

a two-dimensional array of random phase values on a 

grid of sample points and represents phase perturbations 

of a propagating wavefront through the atmosphere in 

accordance with Kolmogorov theory [3]. 

Turbulence-induced phenomena in optical propagation 

through the atmosphere were first studied by Tatarski for 

plane waves. There are several methods for generating 

turbulence phase screens, such as FFT-based method 

[4,5], Zernike polynomials method [6,7] and the 

covariance-based method [8]. The FFT-based algorithm 

is the most widely used phase screen generation 

algorithm, which is improved to some extent by the 

harmonic compensation method [9]. Generated by the 

Zernike polynomial algorithm, phase screen can consist 

with theoretical results in low frequency components. 

However, the high spatial frequency components of 

screens are insufficient. In the covariance-based method, 

the simulation is very accurate, but the supported points 

of the screen are very small. In order to overcome these 

shortcomings, Lane [10] introduced the random midpoint 

displacement algorithm (RMD) [11] as an alternative 

way to generate phase screens based on the fractal 

characteristics of turbulence distorted wavefront. 

Considering the target linear velocity and transverse 

wind speed, a large scale rectangle turbulence screen is 

more appropriate in simulation system of the adaptive 

optics (AO) [12,13]. Due to move the multi-level 

rectangle screen, it is possible to save computer resource 

and improve the computational efficiency. 

In this paper, we formalize the methods taken in a 

previous study and propose a new parallel algorithm 

based on the fractal theory. This algorithm combines the 

fractional Brownian motion (FBM) [14] principle with 

the successive random additions (SRA) [15] technique. 

And it mainly uses three interpolation methods, including 

trigonometric interpolation, square interpolation, and 

diamond interpolation. Simulation results indicate that 

the spatial phase structure function of a random phase 

screen generated by the new algorithm and FFT-based 

algorithm is almost consistent with the theoretical value. 

Referring to V. A. Banakh’s experiments [16,17], we use 

the split-step method (SSM) to simulate the propagation 

of a Gaussian beam through the atmospheric turbulence. 
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And the scintillation index results show that both the new 

fractal algorithm and FFT-based algorithm have achieved 

good results. Furthermore, both in computation time and 

parallel efficiency the proposed algorithm has high 

performance. 

 

 

2. Fractional Brownian motion  

  characteristic of turbulence 

 

The fractal theory originates from research on the 

length of Britain’s winding coastline. It has not been 

strictly defined thus far, but it is generally accepted that 

fractal has the following properties. Among the above 

characteristics, self-similarity is the most prominent, and 

fractal dimension provides a quantitative description 

approach. According to non-Kolmogorov, the phase 

structure function of phase screen is:  
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where 2C  represents the phase structure constant, L  is 

the transmission distance. And 0,r   is the extended 

atmospheric coherence length,   represents the 

power-law exponent. Thus, the Hurst exponent H  of 

FBS can be shown: 

2 2H                   (2) 

In general, only if 5/ 6H   and 11/ 3  , 

D ( , )L   can be used to describe the phase structure 

function of phase screen corresponding to Kolmogorov 

turbulence. The following sections we only discuss the 

situation of Kolmogorov turbulence for simplifying the 

computation process. For the Kolmogorov theory 

turbulence, structure function can be expressed as: 
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where E   is the ensemble average, 0r is the 

atmospheric coherence length. And H  represents the 

Hurst parameter which meets the following constraint 

equation: 
 

1F E H                 (4) 

 

which is called the fractal dimension between 0.5~1. E  

represents surface topology dimension. For plane, 2E  . 

As shown in Equation 3, set 
'r r r   and 5/ 6H  . 

Then structure function is given by: 

5/3

0( ) 6.88( / )D r r r         (5) 

From Equation 4 and 5, atmospheric turbulence can 

be described fractal Brownian motion which Hurst 

parameter is 5/6 and fractal dimension is 13/6. When all 

the edge point interpolations are finished, the remainder 

can be uniformly processed as inner point diamond 

interpolations. Similar to square interpolation, the phase 

value of the interpolation point is the mean of four 

nearby points added with a random increment. Then, 

adjust the four interpolated corner points with 

independent random offsets, which share the same 

variance. Repeat the above steps until the grid is divided 

into the given n-level and generate a square phase screen, 

the size of which is (2 1) (2 1)n n   . 

 

 

3. Generation of a large scale phase screen  

  based on (S-T-D)RMD-SRA 

 

 (S-T-D)RMD 
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Fig. 1. General flow of the (S-T-D)RMD-SRA 

algorithm. 

 

As shown in Equation 5, structure function can be 

used in the derivation algorithm to generate fractal basic 

formula. Since the grids generated by FBM are 

nonindependent, the computation amount of accurate 

fractal algorithms is very long considerably. The inter 

sample difference time series of FBM is called fractional 

Gaussian noise (FGN). Therefore, a simplified method 

called the successive random additions (SRA) is used to 

solve the problem.  Considering the statistical 

characteristics of atmospheric turbulence, the key of the 

algorithm is dividing a rectangle into large amount of 

squares, then through fractal iteration process, combing a 

square-trigonometric-diamond(S-T-D)RMD algorithm 

with the SRA. During the interpolation process, 

interpolation points in edge positions are obtained by 
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trigonometric interpolation.  Center points of squares 

are obtained by square interpolation. And other points are 

calculated by diamond interpolation. Fig. 1 shows the 

flow diagram of the algorithm. 

 

3.1. Partition of a large scale rectangular phase  

   screen into several squares 

 

According to characteristics of the fractal iteration, 

we assume that the size of rectangle phase screen, length is 
1

1 1  ( ) 2
N

l l   and width is 2

2 2  ( ) 2
N

l l  .  Hence, the grid 

points of phase screen are 1 2(2 1) (2 1)
N N   . Firstly, it’s 

necessary to calculate the four initial corner points. On 

account of the statistical properties and difference 

between rectangle’s length and width, values of these 

initial points are defined as the linear combination of 

random variables by: 
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where , , ,     represent the four corner of the 

rectangle, and , , ,a a a aR R R R   
are Gaussian random 

variables, whose mean is zero and variance is 
2

a . 

,b cR R are also Gaussian random variables, whose 

variance is 
2

b  and 
2

c  respectively. By Equation 5 

and 6, we can derive the following equations: 
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By solving Equation 7, we can obtain 
2 2 2, ,a b c   .Then to take them into Equation 6, we can 

obtain four initial corner points. Next, it’s necessary that 

the edges of rectangle phase screen are further 

subdivided by the RMD method, otherwise known as 

linear interpolation. For example, the midpoint between 

  and   is 1P . So 1P can be expressed as 

 1   / 2 P      , where   is a Gaussian random 

variable with zero mean. According to Equation 5, we 

can deduce the general variance formula of linear 

interpolation. In the algorithm, the formula can be used 

in the following linear interpolation directly. It’s only 

related to distance of endpoints ( d ) and atmospheric 

coherence length ( 0r ): 
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Fig. 2. Cropped a rectangle phase screen to multiple squares. 

 

By this analogy, from   to  and   to  , we 

can calculate the midpoints by using the RMD method 

separately. As shown in Figure 2, through multiple 

iterations, rectangular phase screen can be divided into 

n( 1 2/n N N ) square with side length 2l . 

 

3.2. (S-T-D)RMD-SRA Fractal Algorithm 

 

In many respects the non-stationary artifacts of 

RMD are similar to the staircase effect of aliased raster 

display lines including fractal phase screen. With RMD 

only, once determined, the value at a point remains fixed. 

At each stage only half of the points are determined more 

accurately. In term of the Nyquist sampling theorem, to 

approximate N real points requires N/2 complex 

frequencies or N/2 sine and cosine components. The 

process of adding randomness to all points at each stage 

of a recursive subdivision process is successive random 

addition (SRA). 

1P 2P

3P
4P

0P

1D

2D 3D
4D

4D    

(a)                      (b) 

Fig. 3. Schematic diagram of (S-T-D)RMD-SRA. 

(a)Square interpolation. (b)Trigonometric and diamond 

interpolation. 

 

This enhancement reduces many of the visible 

artifacts of RMD and the generation still requires only 

order N operations to generate N points. In order to better 

illustrate the principles of (S-T-D)RMD-SRA fractal 

algorithm, we take a square generation as an example. 

The basic steps are made up of four interpolations: 

1. Square interpolation. As shown in Fig. 3(a), the 

center point is interpolated in the each recursive small 

square, and the value of each interpolation point is the 

mean of four nearby corner points added with a random 

Gaussian variable: 

0 1 2 3 4( ) / 4i i i i i i

sP P P P P            (9) 

where 
i

s  is the ith  square interpolation increment 
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with variance i

s . In order to obtain i

s , there is a 

easily proven fact for any three random variables: It can 

be developed from values of the mean square difference 

between values of x  and z , using the easily proven  

fact
[18]

 that for any three random variables, say , ,    

having zero mean and equal variances. 

2 2 21
( )( ) {( ) ( ) ( ) }

2
                    (10) 

One approach to deal with the non-stationarity of RMD 

technique with SRA. Therefore, each interpolation it’s 

necessary to adjust the four corner points by SRA, which 

share the same i

s : 
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In the proposed fractal algorithm, we can use the 

Equation 12 in the following square interpolation directly. 

It’s only related to side length of squares and atmospheric 

coherence length: 
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2. Trigonometric interpolation. Figure 3(a) shows 

the process. Edge points like 1 2 3 4, , ,D D D D  are 

interpolated in the vertex of each recursive small 

trigonometric. It’s an important improvement compared 

with the linear interpolation, which introduces more 

structure correlations between points on the phase screen. 

The value of 1D  is given by: 
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where 

iq  set to 1/2 or 1/3. It’s the ith  weighting 

coefficient. 
i

t  is the ith  edge point trigonometric 

interpolation increment. The variance 
i

t  is given by: 
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3. Diamond interpolation. As shown in Fig. 3(b), 

point like no  is at the special position, which belongs to 

inner square but not center point. Similar to square 

interpolation, we can obtain its value by diamond 

interpolation: 

1( ) / 4i i i i i i

n n n n n do m w D e           (15) 

where 
i

d  is the ith  edge point diamond interpolation 

increment. The variance is given by: 

5/3

0
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r
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where l  represents side length of squares and 0r  is 

atmospheric coherence length. Similarly, we use the SRA 

method to adjust the four interpolated corner points with 

independent random offsets, which share the same 

variance. 

Parallel iteration 1 nS S , until all squares are 

divided into the given 2N level and obtain a very large 

scale rectangle phase screen, the total grid points of 

phase screen are 1 2(2 1) (2 1)
N N   . 

 

 

4. Simulation results and analysis 

 

In order to provide a complete evaluation of the 

improved algorithm, we generate a rectangular phase 

screen utilizing the algorithm introduced last section. 

Firstly we will compare spatial statistics of the generated 

rectangular with theoretical values. The accuracy and 

efficiency of the above-mentioned algorithm can be 

tested and evaluated. Then for purpose of obtaining 

results of scintillation index, we use the split-step method 

to propagate beam through atmospheric turbulence, 

which is simulated by a rectangular phase screens 

transmission model. Finally we carry out the parallel 

computing of experiments and test the parallel speedup 

of the algorithm by compared the average time of 

generating a single random phase screen of the 

above-mentioned algorithm. We take two sets of 

experiment platforms for testing performance 

comprehensive. Table 1 shows the hardware and software 

configuration of experimental computers. 

 

Table 1. Hardware and software configuration of 

experimental computers. 

 

 OS CPU Memory Software 

Computer 

1 

Win7 Intel i72600 

(3.4 GHz) 

4GB Matlab 

2014a 

Computer 

2 

Fedora20 AMD X4 

955(3.2GHz) 

4GB Matlab 

2014a 

 

4.1. Comparison of the spatial characteristics 

 

The spatial phase structure function curves of the 

random phase screen generated by the FFT-based 

algorithm and (S-T-D)RMD-SRA fractal algorithm are 

shown in Fig. 4, in which the Fig. 4(a) and 4(c) is 

presented by linear coordinate and the Figure 4(b) and 

4(d) is presented by logarithmic coordinate. By using 

FFT-based algorithm, we firstly generate a square phase 

screen whose grid points are 256 × 256. And then 

generate a 256 × 8192 rectangular screen by using the 

algorithm proposed in this paper. The grid points of 

selected rectangular part are also 256 × 256. The 

simulated results are the ensemble average of 10,000 

times from such the 256 × 256 part and compared with 
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the theoretical one. Some parameters which are used to 

generate a rectangular random phase screen are as 

follows. The telescope aperture is 1.20m, the Gaussian 

beam radius is 42.42cm, the coordinate transformation 

factor is 75679.24m (divergent coordinate system), 

sampling interval is 0.001m, and atmospheric coherence 

length is 0.3m. Wind speed is 2m/s. 
 

(a) 

(b) 

(c) 

(d) 

Fig. 4. Comparison of the phase screens spatial 

structure functions; (a), (b) FFT-based algorithm 

structure function; (c), (d) (S-T-D)RMD-SRA algorithm  

               structure function. 

As can be seen in Fig. 4(a) and 4(b), the spatial 

structure function of random phase screen generated by 

the FFT algorithm is close to the theoretical values, 

especially existing high-order harmonic compensation. 

While in Fig. 4(c) and 4(d), the curve generated by the 

(S-T-D)RMD-SRA algorithm is also close to the 

theoretical values. In addition, when the edge points 

takes the trigonometric interpolation (weight coefficient 

q=1/3), the effect of the algorithm is better than take the 

linear interpolation (weight coefficient q=1/2). In 

conclusion, the structure function obtained from the 

present algorithm agree well with the theoretical, as well 

as traditional FFT-based algorithm, especially weight 

coefficient q is 1/3. 

 

4.2. Simulation results of beam propagation  

   through atmospheric turbulence 

 

In addition to the comparison of the spatial statistics, 

a numerical simulation was performed to check the 

validity of this algorithm, in which we use the split-step 

method(SSM)
[19] 

to simulate the propagation of a 

Gaussian beam through a set of random phase screens 

generated by the algorithm discussed in the previous 

section. As statistical indicators, the scintillation index 
2

1 ( )x  is defined as
[20]

: 

2
2

1 2

( ,0)
( ) 1

( ,0)

I x
x

I x


 
 
 

         (17) 

where I  is the received light intensity and    

represents ensemble averaging, 2

1 ( )x  can be obtained 

through transmitting random phase screens. 
 

(a) 

(b) 

 

Fig. 5. Scintillation index with error bar. (a)FFT+3-order 

algorithm. (b)(S-T-D)RMD-SRA algorithm. 
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The parameters used in our simulations are setting as 

follow: the wavelength is 1.315µm. Inner scale 0l  is 

1.5mm and outer scale 0L  is 0.384m, representing a 

grid distance and screen width respectively. The beam 

path has been divided in 10 consecutive phase screens, 

each of them covering a propagation distance ∆z= 50m. 

Finally, the overall propagation distance is 3km. The 

value taken for the turbulence strength constant 2

nC  is 
14 2/35 10 m  . The size of screens 

x yN N  is 256×8192 

pixels. Then we can calculate 0r = 0.148m. In order to 

obtain the scintillation index accurately, we have 

performed a series of 1000 beam propagation simulations 

by using the SSM. As shown in Fig. 5, the results for 

plane wave optical propagation in a turbulence 

atmosphere exhibiting normalization Kolmogorov 

scintillation index are computed. Simulation results of 

FFT+3-order algorithm and (S-T-D)RMD-SRA algorithm 

are shown in Fig. 5(a) and 5(b), respectively. The 

theoretical curve obtained by Rytov approximation is 

defined as 2 7/6 11/6 1/2

1 0(1.23 )nC k z  . The corresponding 

error bars of the scintillation index generated by two 

algorithms are shown in Fig. 5. 

We can see in Fig. 5, with the transmission distance 

increasing, the scintillation index curves made with the 

(S-T-D)RMD-SRA algorithm and other algorithms 

increase first quickly and then show the saturation trend 

obviously. This effect is important in the weak turbulence 

regime. In the weak fluctuation situation, all two 

numerical simulation results are approximately identical 

to the theoretical curves of Rytov theory. The reason of 

such situation can be explained by the fact that in both 

cases the Rytov theory itself under weak fluctuation 

situation is not consummate. Hence, comprehensive 

results for the statistical quantities are not yet available. 

In this respect, the beam propagation through turbulent 

atmosphere should provide useful contributions to a 

better understanding of phase screens. In summary, the 

performance of two algorithms in terms of the 

scintillation index is similarly under the weak fluctuation 

situations. 

 

4.3. Complexity and efficiency analysis 

 

The algorithm complexity can be reflected by the 

average time of generating a single random phase screen. 

The simulated results are the ensemble average of 10,000 

times by using two difference platforms. Fig. 6(a) and 

Fig. 6(c) shows the relationship between average 

generating time and phase screen size based on the 

FFT-based algorithm and (S-T-D) RMD-SRA fractal 

algorithm, respectively. It can be seen that, in terms of 

the average generating time, the FFT-based algorithm 

without harmonic compensation and (S-TD)RMD-SRA 

fractal algorithm are superior to remaining algorithms.  
 

            

(a)                                        (b) 

            

(c)                                  (d) 

Fig. 6. Simulation time-consuming and parallel speed-up ratio of two platforms; (a),(b) Time-consuming and parallel 

speed-up ratio (Computer1). (c),(d) Time-consuming and parallel speed-up ratio(Computer2). 

 

Furthermore, the algorithm proposed in this paper 

can be executed in parallel mode. As shown in Fig. 6(b) 

and 6(d), with increasing numbers of processing cores, 

speed-up ratio of both two platforms have different 

degrees of improvement. When using two processing 

cores, the speed-up ratio of the algorithm is about 1.8 and 

1.9. When using four processing cores, the ratio is about 

3.7 and 3.6. For generating a P Q  grid points, the 
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computational complexity of the present algorithm 

is ( )PQ , while that of FFT-based algorithm is 
2 2

2 2( ( , ))max P log P Q log Q  without harmonic compensation 

and 2 2

2 2( ( 27 ,  27 ))max P log P N Q log Q Q    with 3-order 

harmonic compensation. 
 
 

5. Conclusion 

 

In order to simulate the optical transmission process 

in atmospheric, rectangle turbulence phase screen with 

large scale is used to represent the phase perturbations 

induced by a turbulent media in numerical simulation of 

light propagation through the atmosphere. According to 

the statistical characteristics of atmospheric turbulence, 

an improved algorithm called (S-T-D)RMD-SRA is 

proposed to generate a very large scale rectangle phase 

screen. Then, we analyze the reliability of this algorithm 

from precision and efficiency. 

In terms of algorithm efficiency, the (S-T-D) 

RMD-SRA fractal algorithm is very efficient. We 

compare the spatial phase structure function as edge 

points taken the trigonometric interpolation (q=1/3) and 

linear interpolation (q=1/2). Experimental results indicate 

that the trigonometric interpolation (q=1/3) has better 

performance. In addition, scintillation index results show 

the performance of the proposed algorithm is similar to 

traditional FFT-based algorithm. Therefore, it might be 

particularly useful for propagation problems involving a 

large space as with multiple beams such as phased arrays 

or where a beacon projector is spatially separated from 

the receiving aperture. It can be concluded that the 

improved fractal algorithm has high performance, 

comprehensively considering precision and efficiency. 

Hence, the phase screen generated by the algorithm can 

be used to simulate a large scale rectangular atmospheric 

turbulence. 
 

General remarks 

 

The paper proposed generation method of a large 

scale rectangular phase screen the (S-T-D)RMD-SRA 

fractal algorithm. The improved algorithm has high 

performance, comprehensively considering precision and 

efficiency. Methodology of investigation and study is of 

vital importance. Other research forms are demonstrated 

in Ref [21, 22]. 
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